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Abstract. We present a discussion on how to define the running electromagnetic coupling constant at MZ

or some other intermediate scale, e.g., mΥ . We argue that a natural definition consistent with general
requirements of the renormalization group should use Euclidean values of the momentum of the photon
propagator as the appropriate scale. We demonstrate explicitly, through the evaluation of the running
coupling constant at the scale of the Υ -resonance mass, that the usual definition of the hadronic contribution
with a principal-value prescription is inconsistent. In the determination of the value of α at MZ , we use
a Euclidean definition rather than the principal-value one, and as a result, the numerical difference is
comparable in size to the errors caused by existing experimental and QCD inputs to the evaluation of
α(MZ).

In applications to high precision tests of the standard
model [1] with observables near the Z-boson peak, the
electromagnetic coupling constant should be used at a
scale of the order of the Z-boson mass MZ , (see, e.g.,
[2,3]). The running electromagnetic coupling constant at
MZ has even been chosen as a standard reference param-
eter [4]. It differs numerically from the value of the fine
structure constant α−1 = 137.036 . . . defined at zero mo-
mentum, and from that in Coulomb’s law for heavy non-
relativistic particles. The change is usually accounted for
through the renormalization group equation [5,6]. Because
the fine structure constant is defined at vanishing momen-
tum, and is taken as the initial value in the solution of
the renormalization group equation, the running electro-
magnetic coupling constant at MZ is an infrared-sensitive
quantity inasmuch as the strong interaction contributions
are not easy to compute, because the region is nonper-
turbative at small energies. Therefore this contribution is
usually taken into account in the leading order of elec-
tromagnetic interaction, within a semiphenomenological
approximation through a dispersion relation. There has
been a renewal of interest in a precise determination of
the hadronic contribution during recent years in particu-
lar in connection with the constraints on the Higgs-boson
mass [7]. Some recent references giving a state-of-the-art
analysis of this contribution are [8–11]. A quasi-analytical
approach is used in [12], where some references to ear-
lier papers can be found (see also [13,14]). An extremely
thorough data-based analysis is given in [15].

In the present paper, we critically discuss the defini-
tion of the running electromagnetic coupling constant at
MZ as it is used in the literature. The standard approach
consists in using the principal-value prescription at the
appropriate scale in the physical domain on the positive

energy semiaxis. We argue that a natural definition, that
is consistent with general requirements and the standard
notion of running used in renormalization group applica-
tions should use the Euclidean momentum of the photon
propagator as the appropriate scale.

The running coupling constant α(q2) is defined through
the (one-photon, irreducible) photon vacuum polarization
function Πγ(q2) as

α(q2) =
α

1 −Πγ(q2)
. (1)

Πγ(q2) contains both leptonic and hadronic contributions.
The hadronic part of the polarization function Πγ(q2)
(with one subtraction at zero momentum) reads

Πhad
γ (q2) = − α

3π
q2

∞∫
4m2

π

Rh(s)ds
s(s− q2 − i0)

(2)

where Rh(s) is the normalized cross section of e+e− an-
nihilation into hadrons. Let us introduce, for convenience,
the polarization function Π(q2),

Π(q2) = −q2
∫ ∞

0

R(s)ds
s(s− q2 − i0)

(3)

such that
Πγ(q2) =

α

3π
Π(q2) (4)

where R(s) is the corresponding spectral density. Note
that α(q2) is defined for every complex value of q2 by
(2). For real, negative q2, the polarization function Πγ(q2)
(and Π(q2) as well) is a positive real number, because the
spectral density R(s) is positive.



552 J.G. Körner et al.: On the running electromagnetic coupling constant at MZ

The definition (1) is used in renormalization group ap-
plications, and the scale q2 is taken to be a negative real
number that corresponds to a propagator in the Euclidean
domain. The Euclidean definition is usually used in appli-
cations of grand unified theories [16], supersymmetry at
large energy [17], and physics at the Planck scale.

For the precise study of the physics at the Z-boson
pole, the effective electromagnetic interaction coupling
constant ᾱ is represented in the form

ᾱ =
α

1 −∆α
. (5)

Numerically one obtains a positive real number for ∆α.
In the present literature, a theoretical expression for

∆α is defined directly on the positive semiaxis, by the use
of the principal-value prescription for the singularity of
the integrand in (2):

∆α = ReΠγ(M2
Z),

ReΠγ(M2
Z) = − α

3π
M2

Z P

∞∫
4m2

π

R(s)ds
s(s−M2

Z)
. (6)

Here P
∫

denotes the principal value of the integral. This
makes ∆α real (the initial i0 prescription for the integral
gives it an imaginary part), which is appropriate for a
coupling constant. We argue that this prescription is not
adequate for the physical situation at hand and does not
correspond to the notion of a running coupling used in the
standard renormalization group applications. The latter
corresponds to scales taken in the Euclidean domain

αE(µ2) =
α

1 −Πγ(−µ2)
,

Πγ(−µ2) =
α

3π
µ2

∞∫
4m2

π

R(s)ds
s(s+ µ2)

. (7)

The running electromagnetic coupling constant at the
scale MZ is then defined as αE(M2

Z). Therefore, for the
phenomenological parameter “running electromagnetic
coupling constant at the scale MZ”, denoted by ᾱ, we
have two representations:
i) the standard one with a principal-value prescription,

ᾱ = αPV(M2
Z), ∆α = ReΠγ(M2

Z); and (8)

ii) the alternative one in the Euclidean domain,

ᾱ = αE(M2
Z), ∆α = Πγ(−M2

Z), (9)

which is defined through

αE(M2
Z) =

α

1 −Πγ(−M2
Z)
,

Πγ(−M2
Z) =

α

3π
M2

Z

∞∫
4m2

π

R(s)ds
s(s+M2

Z)
. (10)

We suggest that the Euclidean version be used. The
idea of changing scales is embodied in the renormaliza-
tion group equation, which allows one to control large
logarithms. Therefore, theoretically, one is dealing with
a logarithm of the ratio of two scales. Note that the no-
tion of scale becomes rather imprecise as soon as complex
numbers are involved. For example, numerically M2

Z has
the same “scale” as eiπM2

Z = −M2
Z . The choice of an ap-

propriate scale is determined by the particular kinematics
and the higher order corrections of each process in ques-
tion. In the leading logarithmic approximation, however,
keeping the finite corrections to large logarithms is beyond
the accuracy of an approximation that renders all scales
with the same absolute value equivalent. As a reference
value for the coupling constant the usual choice is to take
a Euclidean point. This problem is discussed for strong
interactions in [18], where different versions of a real part
and an absolute value definition of the coupling constant
at complex points have been also studied. In the general
case, it is difficult to decide on how to deal with observ-
ables, including complex numbers within the renormaliza-
tion group resummation of logarithms. For two-point func-
tions, however, there is a natural solution to this problem,
based on their analytic properties: the dispersion represen-
tation [19,20]. Below, we discuss these two possibilities of
defining the running electromagnetic coupling constant at
the scale MZ .

First we show that the two (Euclidean and principal-
value) definitions are numerically close for applications in
the vicinity of the Z-boson peak discussed in the litera-
ture. Let us take (2) and split the whole region of integra-
tion into two parts separated by s0:

Π(q2) = −q2
∫ s0

0

R(s)ds
s(s− q2 − i0)

−q2
∫ ∞

s0

R(s)ds
s(s− q2 − i0)

. (11)

If |q2| is chosen such that |q2| � s0, one can expand
the denominator in the first integral. Then, if s0 is large
enough, one can use perturbation theory for the spectral
density in the second integral. For illustrative purposes, we
choose a very simplified approximation for R(s), namely
R(s) = const = 1 for s > s0, and we obtain

Π(q2) =
∫ s0

0

R(s)
s

ds+ ln
|s0 − q2|

s0
, (12)

where the principal-value prescription has been used. Ex-
panding (12) in the limit |q2| � s0, we finally obtain

Π(q2) =
∫ s0

0

R(s)
s

ds+ ln
|q2|
s0

, (13)

which is independent of the phase of the complex number
q2. The same result can be obtained directly from (3) in
this limit. Therefore, in the above approximation, with the
suggested regime of variables, the Euclidean and principal-
value definitions are equivalent numerically. Later on, we
discuss corrections to this leading order approximation
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that depend on whether the Euclidean or principal-value
definition is used.

This is a qualitative picture. Because the above sim-
plifying assumptions can be expected to correctly embody
the main features of a more sophisticated numerical analy-
sis, it is clear that the numerical change, which stems from
our choosing q2 in the Euclidean domain rather than using
the conventional definition, is under control at the scale
of MZ , and does not jeopardize current phenomenology.
However, the definition in the Euclidean domain given in
(10) is preferable from a theoretical point of view: It is
natural; it gives a real number; it is smooth; and it is
consistent with the renormalization group.

The principal-value prescription has equally obvious
deficiencies. It is ad hoc; it gives a real part of a propagator
which is not directly related to a coupling constant in a
renormalization group sense; and it is not smooth.

The last deficiency listed is, in fact, the most crucial
one. Let us present more details. We take the principal-
value definition at q2 = M2

Z and compute the polarization
function for a model spectral density R(s) = θ(s − s0),
obtaining

Π(M2
Z) = ln

|s0 −M2
Z |

s0
. (14)

Note first that the polarization function (14) gives a rather
curious result,

P

∞∫
M2

Z
/2

ds
s(s−M2

Z)
= 0 (15)

which means that the contributions of all states with
masses larger than MZ/

√
2 ∼ 60 GeV are exactly equal

to zero, assuming that the asymptotic spectral density in
this region is constant. Also, there is a sign change in the
vicinity of MZ/

√
2. This feature persists for any realistic

R(s) in the vicinity of some point s∗ ' M2
Z/2, because in

this region, QCD perturbation theory works well, and the
spectral density is rather smooth and close to its asymp-
totic value, which is almost a constant (up to a slow log-
arithmic decrease). Therefore one gets the exact equality

P

∞∫
s∗

R(s)ds
s(s−M2

Z)
= 0 (16)

for some s∗ ∼ M2
Z/2.

Furthermore, if one takes s0 = M2
Z in (14) then the

logarithm is ill-defined. It can be seen that this is a conse-
quence of the principal-value definition (6). Though this
is a rather academic example, we nevertheless take it as
a warning, because there is no sharp increase of the spec-
tral density, nor changes, in general, in the vicinity of the
Z-boson mass. More realistic situations are considered be-
low. In contrast to the principal-value definition, the Eu-
clidean definition is also fine in this case:

Π(−M2
Z) = ln

s0 +M2
Z

s0
. (17)

The reason for the ill-defined behavior of (14) and (6) is
clear. The principal-value prescription leads to a distribu-
tion P1/x which is defined only on smooth functions. A
product of two distributions,

(
P

1
s−M2

Z

)
θ(s−M2

Z) (18)

is not an integrable function. An ad hoc definition with a
principal-value prescription fails to define a value for the
running coupling at some particular points and particular
functions R(s) in (6); thus one has to introduce further
rules for such cases.

Additionally, in a more realistic situation, one needs
the running electromagnetic coupling constant at the
scales around the J/ψ- or Υ -family resonance masses in or-
der to account for their leptonic widths. With the
principal-value definition, it is impossible to compute the
running electromagnetic coupling constant at the scales
around the resonance masses. Indeed, the correction ∆α
to the running electromagnetic coupling constant at the
scale of the Υ -meson mass, mΥ , is given by an ill-defined
integral of the product of two distributions:

(
P

1
s−m2

Υ

)
δ(s−m2

Υ ). (19)

This quantity is not defined as a distribution because a
product of two distributions is not defined when their sin-
gular points coincide.

Leaving the mathematical statement about the ill-
defined behavior of a product of two distributions aside, in
practice, the results following from the principal-value def-
inition will be unstable (for finite widths of the resonances
or for some sharp, but still smooth, increase of the spec-
tral function). As an explicit example, we take the spectral
density corresponding to a single Breit–Wigner resonance
and calculate its contribution to ReΠ(M2

Z). The Breit–
Wigner spectral function is given by

RBW(s) =
1
π

ΓM

(s−M2)2 + Γ 2M2 , (20)

where M and Γ are the mass and the width of the res-
onance, respectively. As Γ → 0, one obtains RBW(s) →
δ(s − M2). After integration (with proper care taken for
the point s = 0), one finds

M2
ZP

∫ ∞ RBW(s)ds
s(s−M2

Z)
=

M2 −M2
Z

(M2 −M2
Z)2 + Γ 2M2 + . . .

=
∆

∆2 + Γ 2M2 + . . . , (21)

with ∆ = M2 −M2
Z . Only potentially singular terms for

the limit Γ → 0, in the vicinity M2 ∼ M2
Z have been

kept. The last function in (21) has its extremal points at
∆ = ±ΓM , with the values

∆

∆2 + Γ 2M2

∣∣∣∣
∆=±ΓM

= ± 1
2ΓM

. (22)
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There is no regular limit Γ → 0, and further rules would
be required to deal with this limit. Note that the result
(21) can be obtained without explicit integration of the
Breit–Wigner spectrum. Since the Breit–Wigner function
can be regarded as a regularization of a δ-distribution,
one can introduce a regularization of P1/x in the class of
infinitely smooth functions instead. For example,

lim
ε→0

x

x2 + ε2
= P

1
x

and

lim
ε→0

(s−M2
Z)

(s−M2
Z)2 + ε2

= P
1

s−M2
Z

.

Then after the integration with an infinitely narrow reso-
nance one gets

M2
Z

∫
δ(s−M2)(s−M2

Z)ds
s[(s−M2

Z)2 + ε2]
=
M2

Z

M2

∆

∆2 + ε2

=
∆

∆2 + ε2
+ . . . (23)

for M2 ∼ M2
Z . The regularization cannot be unambigu-

ously removed, i.e., there is no unique limit at ε = 0 in
the vicinity of ∆ = 0. Of course, this is a reflection of the
fact that the product of two distributions is ill-defined.

We will not dwell on the ill-defined behavior that re-
sults when a θ-function-type spectral density is used. This
is a realistic possibility when one computes the light-quark
contributions to the running electromagnetic coupling con-
stant that is normalized in the vicinity of a sharp rise of
the spectral density around 1.5 GeV2.

With a Euclidean definition none of the above difficul-
ties appears. Also, because in this case the polarization
function is defined in the Euclidean domain, one need not
integrate all data (only a small region near the origin re-
quires explicit integration). Thus we can use all the power
of perturbation theory (e.g., [21]), although special care
has to be taken with regard to the subtraction at zero
momentum that enters the definition of the coupling con-
stant and makes it an infrared sensitive quantity. For this
purpose, however, more sophisticated means can be used
that will increase the accuracy [22–24].

Two further remarks are called for here. The first con-
cerns the leptonic contribution. For a lepton with the mass
ml, the asymptotic form of this contribution reads

Πlept = ln
(
M2

Z

m2
l

)
− 5

3
, (24)

and has the same real part for any real phase ϕ of eiϕM2
Z .

When the asymptotic form is used, both prescriptions are
equivalent numerically.

The second remark concerns the higher order contri-
butions of the electroweak interactions. In the next order
of the electroweak interaction, there is a contribution of
the Z-boson peak to the polarization function Πγ(q2), due
to γZ transitions (e.g., [25]). Therefore, in that order, one
has to interpret the product of the principal-value distri-
bution with the sharp Breit–Wigner spectrum of the Z-
boson pole itself. Again, this problem is not present within
the Euclidean definition.

Now we briefly discuss the numerical difference that
can result from the change of the definition of the run-
ning coupling constant at MZ . Our model for the hadronic
spectral density R(s) is simple, and is mainly designed
for illustrative purposes, so that one can easily trace the
difference between the principal-value and Euclidean def-
initions of the running coupling constant. The spectral
density is chosen such that all calculations can be done
analytically; this is convenient for estimating the order of
magnitude of the difference between the two definitions.
For the light quarks u, d, s we assume the existence of a
low-lying resonance (e.g., ρ, ω, and ϕ) and a continuum.
In general, we take the following form of the spectrum for
every light-quark flavor:

Rlight(s) = 3Q2
q[2m

2δ(s−m2) + θ(s− 2m2)],

according to the model of [26] with Qq being a light-
quark fractional charge. The couplings of the low-lying
resonances have been replaced by the duality interval 2m2.
For heavy quarks, we take the simplest model of the form

Rheavy(s) = 3Q2
Qθ(s− 4m2

Q),

which represents the partonic asymptotic value, with a
naive step function two-quark-threshold. QQ is a heavy-
quark charge. Collecting everything together, we find the
following results. The three light quarks give the result for
Π(q2) in the general form:

Πlight(q2) = 2
( −2q2

m2 − q2 − i0
+ ln

|2m2 − q2|
2m2

)
.

Expanding at |q2| ∼ M2
Z , one gets

Πlight = 2
[
2 + ln

M2
Z

2m2 +O(m6/M6
Z)

]
(25)

which gives the same answer for both definitions, with
high precision. The difference starts at order O(m6/M6

Z),
and is completely negligible for light-resonance masses of
order 1 GeV (ρ , ω , and ϕ resonances, for instance). For
the charm contribution, we find

ΠPV
charm =

4
3

ln
M2

Z − 4m2
c

4m2
c

in the case of the principal-value prescription. In the case
of the Euclidean prescription, one has

ΠE
charm =

4
3

ln
M2

Z + 4m2
c

4m2
c

.

Expanding these formulas in the small ratio 4m2
c/M

2
Z , one

finds, in the leading order, the following representation:

ΠPV,E
charm =

4
3

ln
M2

Z

4m2
c


1 ∓ 4m2

c

M2
Z

1

ln M2
Z

4m2
c


 .
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We keep this form for further numerical comparisons to
be made in the case of b and t quarks. For the b-quark
contribution, one gets

ΠPV,E
bottom =

1
3

ln
M2

Z

4m2
b


1 ∓ 4m2

b

M2
Z

1

ln M2
Z

4m2
b


 .

For the t-quark contribution, the result reads

ΠPV,E
top =

4
3

ln
(

1 ∓ M2
Z

4m2
t

)
,

and the opposite limit MZ � 2mt can be used to evalu-
ate this contribution for two different definitions with the
necessary accuracy. For numerical estimates of the corre-
sponding contributions, we take

√
2m = 1 GeV for the

light-quark resonances, mc = 1.4 GeV, mb = 4.8 GeV,
mt = 175 GeV, and MZ = 91 GeV. Note that the exact
definition of the quark-mass parameters is not required
here because it is far beyond the accuracy of our sim-
ple model. Moreover, these parameters can be considered
as effective parameters for describing integrals over the
threshold regions of quark production. Nevertheless, we
stay close to canonical values for the quark pole mass.
While the absolute value of the contribution will be ob-
tained rather approximately, the model is nevertheless suf-
ficient for our main purpose: to estimate the difference be-
tween the two definitions. Numerically, (25) leads to the
light-quark contribution

light quarks(u, d, s) = 2 × (2 + 2 × 4.5) = 22.0

with both prescriptions. For the contributions of the heavy
quarks, we find

c quark =
4
3

× 7.0(1.∓ 0.14 × 10−3)

b quark =
1
3

× 4.5(1.∓ 2.5 × 10−3)

t quark =
4
3

× (∓68 × 10−3). (26)

Summing everything together, one obtains the total quark
contribution to the hadronic vacuum polarization in the
form

22.0 +
4
3

× 7.0(1.∓ 0.14 × 10−3)c

+
1
3

× 4.5(1.∓ 2.5 × 10−3)b

+
4
3

× (∓68 × 10−3)t

= 32.8 + 0.1 δ ≈ 33 + 0.1 δ, (27)

where δ = −1 for the principal-value definition, and δ = 1
for the Euclidean definition. One sees that the difference is
saturated by the top-quark contribution. This is natural,
because the mass of a top quark is closest to MZ . Its
contribution to the hadronic vacuum polarization is small

in absolute value, but is completely different for the two
definitions. In the standard notation, we have from (27),

∆αhad =
α

3π
(33 + 0.1 δ) , (28)

with α−1 = 137.036 being the fine structure constant.
The lepton contribution is taken into account according to
the asymptotic formula (24), with the following numerical
values of lepton (e,µ,τ) masses: me = 0.5 MeV, mµ =
0.1 GeV, and mτ = 1.8 GeV. This gives

(24.2)e + (13.6)µ + (7.8)τ − 5 = 40.6 ≈ 41 .

In the standard notation, the lepton contribution reads

∆αlep =
α

3π
41. (29)

The final result for the total contribution of the charged
fermions to the vacuum polarization function becomes

33 + 0.1 δ + 41 = 74 + 0.1 δ,

which, in the standard notation, reads

∆α =
α

3π
(74 + 0.1 δ) = α(7.9 + 0.01 δ).

For the inverse running electromagnetic coupling constant
at the scale MZ , we obtain

α−1(MZ) = 137.0 − (7.9 + 0.01 δ) = 129.1 − 0.01 δ .

Even though the central value of our approximate evalu-
ation is rather close to the results of more precise evalua-
tions [8–11] this agreement should not be taken too seri-
ously. Our estimate is rather rough and serves the purpose
of obtaining the numerical change between the two defi-
nitions of the running electromagnetic coupling constant
at MZ . At present, this change has no decisive influence
on current phenomenology. It is within the error bars of
uncertainty for the more precise values 128.93 ± 0.06 [9]
or even the smaller errors 128.93 ± 0.015exp ± 0.015th [8,
10,11]. Manifestly, taking the recent results of evaluation
with the principal-value definition from [11] (for the sake
of normalization),

∆αhad(ref. [11]) = (276.3 ± 1.6) × 10−4,

we have to move the mean value by 1.5 × 10−4 due to the
change of definition (27). This leads to

∆αhad(Euclidean) = (277.8 ± 1.6) × 10−4 .

Correspondingly, instead of the value

α−1(MZ)PV = 128.933 ± 0.021

of [11], we have

α−1(MZ)Euclidean = 128.913 ± 0.021.

In the last formula, we have neglected the change caused
by the redefinition of the leptonic contribution. Therefore
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the Euclidean definition, which we consider more consis-
tent theoretically, does not violate current phenomenol-
ogy.
However, the change of the mean numerical value of the
inverse running electromagnetic coupling constant at MZ ,
-0.02, is comparable in size with the present uncertainty,
0.021. In the future, when the experimental data used in
the determination of the running electromagnetic coupling
constant at MZ improves, the difference between the two
definitions will become significant.

Our last numerical example concerns the order of mag-
nitude of the singular term in the coupling normalized
at the scale mΥ , within the principal-value prescription.
With the same normalization as in our simple model, the
contribution of the Υ resonance to the spectral density in
the Breit–Wigner approximation reads

RΥ (s) =
2
3
mΥ∆ΥRBW(s,mΥ , Γ ), (30)

where ∆Υ ≈ 1 GeV is its duality interval linear in energy
[27] related to its leptonic decay width, ∆Υ = 27πΓ (Υ →
e+e−)/2α2 with Γ (Υ → e+e−) = 1.32 keV, while Γ =
52.5 keV is its full width. The singular contribution of the
Υ resonance to the polarization function abruptly changes
between the two extremes taken from (22) as the normal-
ization point passes the position of the resonance:

±2
3
mΥ∆Υ

(
1

2ΓmΥ

)

Numerically, one gets

∆Υ

3Γ
= 6.7 × 103,

which is far too big from the point of view of phenomenol-
ogy.

The examples presented in this paper clearly demon-
strate the inconsistency of the present definition of the
running electromagnetic coupling constant within the
principal-value prescription. However, these problems are
not noticeable when one discusses a normalization point
around MZ , because the hadronic spectral density is
smooth in this region. We will present the results of an
accurate numerical analysis within the Euclidean defini-
tion in another paper.

To conclude, we suggest that the Euclidean definition
of the running electromagnetic coupling constant at MZ

be used as a reference parameter for high precision tests
of the standard model at the Z-boson peak. It is free of
the shortcomings of the present definition, which is based
on the propagator at the physical value of the Z-boson
mass, within the principal-value prescription.
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